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Abstract
Perturbation expansions up to third order for the generalized spiked harmonic
oscillator Hamiltonians H = − d2

dx2 + x2 + A
x2 + λ

xα

(
A � 0, 2γ > α, γ =

1 + 1
2

√
1 + 4A

)
and small values of the coupling λ > 0, are developed. Upper

and lower bounds for the eigenvalues are computed by the procedure of Burrows
et al (1987 J. Phys. A: Math. Gen. 20 889–97) for assessing the accuracy
of a truncated perturbation expansion. Closed-form sums for some related
perturbation double infinite series then immediately follow as a result of this
investigation.

PACS number: 03.65.Ge

1. Introduction

It is well known that, although many perturbation expansions diverge, they may actually be
asymptotic expansions whose first few terms can yield good approximations. The family of
spiked harmonic oscillator Hamiltonians

H = H0 + λV = − d2

dx2
+ x2 +

λ

xα
(0 � x < ∞) (1.1)

affords interesting examples of this phenomenon. Harrell [1] has shown that the familiar
Rayleigh–Schrödinger perturbation series diverge accordingly as n � 1

α−2 , where n is the
order of the Rayleigh–Schrödinger term. For example, the first-order perturbation correction
diverges for α � 3, while the second-order correction term diverges if α � 5

2 , and so on. In
a series of articles, Aguilera-Navarro et al [2], Estv́ez-Bretón et al [3] and Znojil [4] have
shown for the case of α < 5/2, the so-called non-singular case, that the perturbation series of
the ground-state energy up to the second-order corrections is given by

E(λ, α) = 3 +
�

(
3−α

2

)
�

(
3
2

) λ − �2
(

3−α
2

)
�2

(
3
2

) ∞∑
i=1

(
α
2

)2
i

4i
(

3
2

)
i
i!

λ2 + · · · for α < 5/2. (1.2)
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Based on resummation techniques, an analysis of Aguilera-Navarro et al [2] showed that
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(
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+
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i=1

(
α
2

)2
i

4i(i + 1)
(

3
2

)
i
i!

(1.3)

where 2F1(a, b; c; z) is the known Gauss hypergeometric function [5] with circle of
convergence |z| = 1. For the limiting case α → 2, the first term on the right-hand side
of (1.3) was shown by Estv́ez-Bretón et al [3] using l’Hôpital’s rule to be

lim
α→2

1

8
(

α
2 − 1

)2

[
2F1

(
α

2
− 1,

α

2
− 1; 1

2
; 1

)
− 1 − 2

(α

2
− 1

)2
]

= π2

16
− 1

4
. (1.4)

Znojil, soon afterwards [4], showed elegantly that (1.4) follows immediately by manipulating
the Maclaurin expansion of the gamma function. Recently, Hall and Saad [6–10] investigated
a larger class, the so-called generalized spiked harmonic oscillator Hamiltonians

H = H0 + λV = − d2

dx2
+ x2 +

A

x2
+

λ

xα
(A � 0). (1.5)

The Gol’dman and Krivchenkov Hamiltonian H0 = − d2

dx2 + x2 + A
x2 , which admits the exact

solutions

ψn(x) = (−1)n

√
2(γ )n

n!�(γ )
xγ− 1

2 e− 1
2 x2

1F1(−n, γ, x2) (1.6)

with exact eigenenergies

En = 4n + 2γ n = 0, 1, 2, . . . γ = 1 + 1
2

√
1 + 4A (1.7)

is regarded as the unperturbed part, and the operator V (x) = x−α as the perturbed part. They
obtained [8] the energy expansion up to the second order as

E(λ, α) = 2γ +
�

(
γ − α

2

)
�(γ )

λ − λ2 α2

16γ

�2
(
γ − α

2

)
�2(γ )

× 4F3

(
1, 1, 1 +

α

2
, 1 +

α

2
; 2, 2, γ + 1; 1

)
+ · · · (1.8)

valid for α < γ + 1, where γ = 1 + 1
2

√
1 + 4A. A closed-form sum for the infinite series in

(1.2) appears as a special case. In particular, for γ = 3/2 or A = 0, equation (1.8), for α < 5
2 ,

reduces to

E(λ, α) = 3 +
2√
π

�

(
3 − α

2

)
λ − λ2 α2

48

�2
(

3−α
2

)
�2(γ )

4F3

(
1, 1, 1 +

α

2
, 1 +

α

2
; 2, 2,

5

2
; 1

)
+ · · ·

and closed-form sums of the infinite series in (1.2) follow immediately. Furthermore, for
α = 2, since

4F3(1, 1, 2, 2; 2, 2, γ + 1; 1) = 2F1(1, 1; γ + 1; 1) = �(γ + 1)�(γ − 1)

�(γ )�(γ )
= γ

(γ − 1)

by means of Chu–Vandermonde theorem [5]

2F1(a, b; c; 1) = �(c)�(c − a − b)

�(c − a)�(c − b)
for c − a − b > 0 (1.9)
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the perturbation expansion (1.8) takes the very simple form

E(λ, α = 2) = 2γ +
λ

(γ − 1)
− λ2

4(γ − 1)3
+ · · · . (1.10)

This is obtained, as expected, by means of Taylor’s expansion of the exact energy
2 +

√
1 + 4(A + λ) about λ = 0. In order to understand the result (1.4), however, we should
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where we have used (1.9). Now since

lim
α→2

1(
α
2 − 1

)2

[
�(γ − 1)�(γ − α + 1)

�
(
γ − α

2

)
�

(
γ − α

2

) − 1

]
= ψ(1)(γ − 1)

we have
∞∑
i=1

(1)2
i

(i + 1)(γ )ii!
= 1

2γ
3F2(1, 2, 2; 3, γ + 1; 1) = (γ − 1)ψ(1)(γ − 1) − 1 for γ > 1

(1.11)

where ψ(1)(z) is the first derivative of the digamma function (or logarithmic derivative of the
gamma function [11]) . Further, since ψ(1)

(
1
2

) = π2

2 , the result of (1.4) follows immediately
by replacing γ with 3/2 in (1.11).

The interesting feature of expression (1.8) is that, it can be applied to the ground-state
eigenenergy at the bottom of each angular momentum subspace labelled by l = 0, 1, 2, . . . ,

in N dimensions: we just need to replace A with A → A +
(
l + 1

2 (N − 1)
)(

l + 1
2 (N − 3)

)
.

Furthermore, as we shall prove in the next section, for α = 4 and γ > 3 (or A > 3.75), the
perturbation expansion (1.8) takes the very simple form

E(λ, α = 4) = 2γ +
λ

(γ − 1)(γ − 2)
− λ2 4γ 2 − 15γ + 13

4(γ − 1)3(γ − 2)3(γ − 3)
+ · · · (1.12)

where ψ is the digamma function. For α = 6 and γ > 5 (or A > 15.75), (1.8) becomes

E(λ, α = 6) = 2γ +
λ

(γ − 1)(γ − 2)(γ − 3)
− �2(γ − 3)

8�2(γ )

(
(γ − 2)(γ − 1)

(γ − 5)(γ − 4)

+
2(γ − 1)

(γ − 4)
+

40 − 57γ + 8γ 2 − γ 3

(γ − 3)(γ − 2)(γ − 1)

)
λ2 + · · · . (1.13)

In section 2 we shall extend these perturbation expansions to third-order corrections. In
section 3, we shall discuss upper and lower bounds for the eigenvalues by the procedure of
Burrows et al [12] for assessing the accuracy of a truncated perturbation expansion. These
bounds will shed some light on the question regarding the acceleration of the variational
method. Our conclusions and some remarks concerning the sums of some double infinite
series will be given in section 4.
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The functions 1F1 and 4F3, mentioned above, are special cases of the generalized
hypergeometric function [13]

pFq(α1, α2, . . . , αp; β1, β2, . . . , βq; z) =
∞∑

k=0

∏p

i=1(αi)k∏q

j=1(βj )k

zk

k!
(1.14)

where p and q are non-negative integers, and none of the βj (j = 1, 2, . . . , q) is equal to
zero or to a negative integer. If the series does not terminate (that is to say, none of the
αi, i = 1, 2, . . . , p, is a negative integer), then the series, in the case p = q + 1, converges or
diverges accordingly as |z| < 1 or |z| > 1. For z = 1, the series is convergent provided∑q

j=1 βj − ∑p

i=1 αi > 0. Here (a)n, the shifted factorial (or Pochhammer symbol), is
defined by

(a)0 = 1 (a)n = a(a + 1)(a + 2) · · · (a + n − 1) = �(a + n)

�(a)
n = 1, 2, . . . .

(1.15)

2. Third-order perturbation expansions

In this section, we will expand the perturbation expansions (1.8) to the third-order correction.
Although, we will concentrate on the cases of α = 4 and α = 6, since they are the most
relevant in the literature [15–24], for other values of α the procedure is similar. In order to lay
the foundation of the perturbation expansion (1.8), we first review the Rayleigh–Schrödinger
perturbation theory for a non-degenerate case [25]. The fundamental problem in perturbation
theory is the solution of the Schrödinger equation Hφ = E(λ)φ when H = H0 + λV . The
basic assumption is that φ and E(λ) may be expanded in power series in the perturbation
parameter λ:

φ = ψ0 +
∞∑
i=1

λiφi E(λ) = E0 +
∞∑
i=1

λiεi . (2.1)

Here ψ0 is a solution to the unperturbed problem H0ψ0 = E0ψ0. We also choose the
normalization (ψ0, φ) = 1, which implies that the higher-order corrections φ1, φ2, . . . , are
orthogonal to ψ0. Perturbation theory tells us in this case that

ε1 = (ψ0, V ψ0) ε2 = (ψ0, V φ1) ε3 = (φ1, V φ1) − ε1(φ1, φ1) . . . (2.2)

or, equivalently [26],

ε1 = (ψ0, V ψ0) ε2 =
∞∑
i=1

|V0i|2
Ei − E0

(2.3)

ε3 =
∞∑

s=1

∞∑
k=1

V0sVskVk0

(Es − E0)(Ek − E0)
− ε1

∞∑
i=1

|V0i|2
(Ei − E0)2

. . . .

From (2.2) it is clear that the first-order wavefunction φ1 determines the energy to the third
order. The matrix elements Vij = (ψi, V ψj ) in (2.3) are computed by means of the basis
solution {ψn} of the unperturbed Hamiltonian H0. For the generalized spiked harmonic
oscillator Hamiltonian (1.5), the expectation values of the operator V (x) = x−α with respect
to the Gol’dman and Krivchenkov basis (1.6) are given explicitly by

Vij = (−1)i+j

(
α
2

)
i
�

(
γ − α

2

)
(γ )i�(γ )

√
(γ )i(γ )j

i!j !
3F2

(
−j, γ − α

2
, 1 − α

2
; γ, 1 − i − α

2
; 1

)
. (2.4)
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Of particular interest is

Vi0 = V0i = (−1)i

(
α
2

)
i

(γ )i

√
(γ )i

i!

�
(
γ − α

2

)
�(γ )

. (2.5)

Recently, Hall et al [27, 28] have shown that the first-order correction of the wavefunction, in
the case of α = 2, is given by

φ1(x) = 1√
2

xγ− 1
2 e− x2

2

(γ − 1)
√

�(γ )

[
log(x) − 1

2
ψ(γ )

]
for γ > 1. (2.6)

Therefore from (2.2) and (2.3), by using (2.5), we have

−�2(γ − 1)

�2(γ )

∞∑
i=1

(1)2
i

4i(γ )ii!
=

∫ ∞

0
x−2ψ0(x)φ1(x) dx = − 1

4(γ − 1)3

as shown previously using the summation technique. This idea can be used to obtain a simple
form by expressing 4F3 in (1.8) in terms of elementary functions. These indeed are facilitated
by the closed expression of the first-order correction of the wavefunctions developed earlier
[27, 28]. In the case α = 4, the first-order correction of the wavefunction reads

φ1(x) = 1

2
√

2

xγ− 1
2 e− x2

2

(γ − 2)(γ − 1)
√

�(γ )

[
log(x2) − ψ(γ ) − γ − 1

x2
+ 1

]
for γ > 2

(2.7)

where ψ is the digamma function [11]. Using (2.2) and (2.3), we have

4F3(1, 1, 3, 3; 2, 2, γ + 1; 1) = 1

4

γ (4γ 2 − 15γ + 13)

(γ − 1)(γ − 2)(γ − 3)
γ > 3

and therefore the perturbation expansion (1.12) follows immediately. These particular values
of 4F3(1, 1, 3, 3; 2, 2, γ + 1; 1) can be verified by means of the following lemma that extends
the earlier identity

3F2(a, b, c + 1; d, c; z) = 2F1(a, b; d; z) +
ab

cd
z 2F1(a + 1, b + 1; d + 1; z)

given by Luke [29]. The proof follows immediately by use of the series representation for the
hypergeometric functions 3F2 and 2F1, as given by (1.14).

Lemma 1. For |z| < 1,

4F3(a, b, c + 1, d + 1; e, c, d; z) = 2F1(a, b; e; z)

+
ab

ec

(
1 +

c + 1

d

)
z 2F1(a + 1, b + 1; e + 1; z)

+
(a)2(b)2

dc(e)2
z2

2F1(a + 2, b + 2; e + 2; z). (2.8)

Further, in the case of |z| = 1 and e − a − b > 2,

4F3(a, b, c + 1, d + 1; e, c, d; 1) = �(e)

�(e − a)�(e − b)

[
�(e − a − b) +

ab

c

(
1 +

c + 1

d

)

× �(e − a − b − 1) +
(a)2(b)2

dc
�(e − a − b − 2)

]
. (2.9)

In the case of α = 6, the first-order correction of the wavefunction reads [27, 28]

φ1(x) = 1

2
√

2

�(γ − 3)

�(γ )
√

�(γ )
xγ−1/2 e−x2/2

[
log(x2) − ψ(γ ) +

3

2
− γ − 1

x2
− (γ − 1)(γ − 2)

2x4

]
(2.10)
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consequently, from ε2 = (ψ0, x
−6φ1), we have for γ > 5

4F3(1, 1, 4, 4; 2, 2, γ + 1; 1) = γ

18

(
(γ − 2)(γ − 1)

(γ − 5)(γ − 4)
+

2(γ − 1)

(γ − 4)

+
(40 − 57γ + 24γ 2 − 3γ 3)

(γ − 3)(γ − 2)(γ − 1)

)
. (2.11)

Therefore equation (1.8) takes the simpler form (1.13), as the result of (2.11). In order to extend
(1.12) and (1.13) to the third-order perturbation correction, we need only use the expression
ε3 = (φ1, V φ1) − ε1(φ1, φ1), as mentioned in (2.2). Before we proceed with our calculations
we shall first prove the following general result concerning the first-order correction of the
wavefunction.

Lemma 2. The first-order perturbation correction φ1(x) of the exact solution of Hamiltonian
(1.5), with arbitrary α, satisfies the following normalization condition:

(φ1, φ1) = α2

64γ

�2
(
γ − α

2

)
�2(γ )

5F4

(
1, 1, 1,

α

2
+ 1,

α

2
+ 1; 2, 2, 2, γ + 1; 1

)
as long as α < γ + 2.

Proof. We note that, by comparing the expression for ε3 in (2.2) and (2.3), we find

(φ1, φ1) =
∞∑
i=1

|V0i|2
(Ei − E0)2

.

For the Hamiltonian (1.5), V0i is given by (2.5) and Ei is given by (1.7); therefore, we have

(φ1, φ1) = 1

16

�2
(
γ − α

2

)
�2(γ )

∞∑
i=1

(
α
2

)2
i

i2 i!(γ )i

= 1

16

�2
(
γ − α

2

)
�2(γ )
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i=0

(
α
2

)2
i+1

(i + 1)2(i + 1)!(γ )i+1

= α2

64γ

�2
(
γ − α

2

)
�2(γ )
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i=0

(1)i(1)i(1)i
(

α
2 + 1

)2
i

(2)i(2)i(2)i(γ + 1)i

1

i!

= α2

64γ

�2
(
γ − α

2

)
�2(γ )

5F4

(
1, 1, 1,

α

2
+ 1,

α

2
+ 1; 2, 2, 2, γ + 1; 1

)
where we have used the Pochhammer identities (a)n+1 = a(a + 1)n, (1)n = n! and
(2)n = (n+ 1)! (see (1.15)), and the series representation for the hypergeometric function 5F4,

as given by (1.14). �

Direct computations, using ε3 = (φ1, x
−4φ1) − ε1(φ1, φ1) where φ1 is given by (2.7) and

ε1 = �(γ−2)

�(γ )
leads, for α = 4 and γ > 4, to

E(λ, α = 4) = 2γ +
λ

(γ − 1)(γ − 2)
− λ2 4γ 2 − 15γ + 13

4(γ − 1)3(γ − 2)3(γ − 3)

+

{
16γ 5 − 175γ 4 + 742γ 3 − 1525γ 2 + 1520γ − 590

8(γ − 4)(γ − 3)2(γ − 2)5(γ − 1)5

}
λ3 + · · · . (2.12)

For the case of α = 6, the first-order correction of the wavefunction is given by (2.10). After
some straightforward algebraic calculations, the ground-state perturbation expansion, up to
the third order of λ and valid for γ > 7, now reads

E(λ, α = 6) = 2γ + ε1λ + ε2λ
2 + ε3λ

3 + · · · (2.13)
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Table 1. A comparison between the upper bounds for the Hamiltonian (1.5), for a wide range of
values of A = l(l + 1) and λ, by formula (2.14) and the bounds EU

a obtained by Aguilera-Navarro
et al [21]. Exact results E found by the direct numerical solution of Schrödinger’s equation are
also presented.

λ l EU
a EU E

0.001 3 9.000 114 279 82 9.000 114 279 12 9.000 114 279 12
4 11.000 063 4908 11.000 063 4907 11.000 063 490 74
5 13.000 040 4037 13.000 040 4036 13.000 040 403 64

0.01 3 9.001 142 268 25 9.001 142 199 48 9.001 142 199 40
4 11.000 634 7955 11.000 634 7888 11.000 634 788 89
5 13.000 404 0018 13.000 404 0006 13.000 404 000 60

0.1 3 9.011 370 328 09 9.011 364 261 69 9.011 364 026 18
4 11.006 336 7394 11.006 336 1001 11.006 336 099 23
5 13.004 036 5464 13.004 036 4325 13.004 036 432 52

1 3 9.109 013 250 38 9.109 311 262 10 9.108 658 607 52
4 11.062 293 1434 11.062 249 2820 11.062 241 719 38
5 13.040 025 4838 13.040 015 5515 13.040 015 183 06

50 103.000 400 037 103.000 400 036 103.000 400 036 76

where

ε1 = λ

(γ − 1)(γ − 2)(γ − 3)

ε2 = −�2(−3 + γ )

8�2(γ )

(
(γ − 2)(γ − 1)

(γ − 5)(γ − 4)
+

2(γ − 1)

(γ − 4)
+

(40 − 3γ (19 + (−8 + γ )γ ))

(γ − 3)(γ − 2)(γ − 1)

)

and ε3 = I1
I2

, for

I1 = 192 088 − 655 905γ + 945 811γ 2 − 751 923γ 3 + 360 811γ 4 − 107 151γ 5

+ 19 257γ 6 − 1917γ 7 + 81γ 8

I2 = 8(γ − 7)(γ − 5)2(γ − 4)(γ − 3)5(γ − 2)5(γ − 1)5.

From a first reading of the articles by Sinanoǧlu [30] (the main results of which are not
affected by his false claim), or even the work of Morse and Feshbach [31] on perturbation
theory, one understands that expressions (2.12) and (2.13) are upper bounds to the exact energy
since all the odd-order energies would form upper bounds to the exact energy. This is not in
fact true because ε2 in the general perturbation expansion (2.1) will always have a negative
sign, thus not guaranteeing the upper bounds [32, 33]. However, it is possible to obtain a
definite upper bound to the exact eigenvalue by means of the perturbation expansion. Thus

E(λ, α) = E0 + ε1λ +
ε2λ

2 + ε3λ
3

1 + λ2(φ1, φ1)
(2.14)

where (φ1, φ1) is given by lemma 2. The upper bound (2.14) can easily be demonstrated by
applying the variational principle to the approximate wavefunction φ = ψ0 + λφ1, where ψ0

and φ1 satisfy the zero- and first-order perturbation equations

H0ψ0 = E0ψ0 (H0 − E0)φ1 = (E1 − V )ψ0. (2.15)

In table 1, we compare the upper bounds obtained by means of (2.14) in the case of α = 4
and those of Aguilera-Navarro and Koo obtained by variational analysis using appropriate trial
functions. In the following section, we shall obtain the symmetric lower and upper bounds by
the method of Burrows et al [12].
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3. Lower and upper bounds

It is natural to ask: how small λ should be for the perturbation expansions (2.12) and (2.13)
to be valid? The question can be answered by studying upper and lower bounds to the
eigenvalues. Based on the difference between the bounds we can infer a definite indication
of the accuracy of truncated Rayleigh–Schrödinger perturbation series, such as (2.12) and
(2.13). Wide bounds show that the truncated Rayleigh–Schrödinger perturbation series is
suspect, while tight bounds demonstrate the high accuracy of the truncated expansion. For
our purposes, the most suitable procedure developed for assessing the accuracy of a truncated
perturbation expansion is due to Burrows et al [12]. A brief review of the method is presented
here: for further details the reader is referred to the original article. Most derivations of bounds
for eigenvalues of self-adjoint operators start from a consideration of positive definite function

(µ(φ, ε), µ(φ, ε)) = ([H − ε]φ, [H − ε]φ) = (Hφ,Hφ) − (φ,Hφ)2 + (ε − (φ,Hφ))2 � 0

(3.1)

where H is the operator in question, ε is a positive parameter and φ is a suitably chosen
(normalized) function. If we expand the normalized function φ in terms of the complete set
of eigenfunctions {φn} of H with eigenvalues En(λ), φ = ∑

n anφn, an = (φ, φn), (φ, φ) =
1 = ∑

n a2
n, we can express the positive definite function in (3.1) as

(µ(φ, ε), µ(φ, ε)) =
∑

n

a2
n(En(λ) − ε)2 � 0.

Let us assume that we have picked the value of ε to lie closest to the value of the ith eigenvalue
Ei , i.e.

(µ(φ, ε), µ(φ, ε)) =
∑

n

a2
n(En(λ) − ε)2 � (Ei(λ) − ε)2 � 0. (3.2)

Combining (2.6) and (2.7), it can easily be seen that

f−(ε) � Ei(λ) � f+(ε) (3.3a)

where

f±(ε) = ε ±
√

‖Hφ‖2 − (φ,Hφ)2 + (ε − (φ,Hφ))2. (3.3b)

It is not hard to show that f±(ε) is indeed a monotonic increasing function of ε. This result
will turn out to be useful in the following discussion. The bounds of Burrows et al follow [12]
by setting

µ(φ,Ep(λ)) = [H0 + λV − Ep(λ)]φ (3.4)

where

φ = N1(ψ0 + λφ1) Ep(λ) = E0 +
p∑

i=1

λiεi (3.5)

and, for all p � 3, ψ0 and φ1 satisfy the zero- and first-order equations of the Rayleigh–
Schrödinger perturbation theory (2.15). Further, the εi, i = 1, 2, 3, are given by means of
(2.2). Here, N1 in equation (3.5) is a normalization constant for the truncated first-order
expansion of the exact wavefunction:

N1 = (1 + λ2(φ1, φ1))
−1/2.

If φ and Ep(λ) were exact, µ = 0. Thus we expect µ to be small if φ and Ep(λ) are good
approximations to the exact solutions. Consequently, a good test of the approximations (3.3a)–
(3.3b) may be made by examining the value of the norm ‖µ‖ =

√
µ2. Simple calculations,

using (3.5) and (2.2), now give
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Table 2. Eigenvalue bounds for different values of λ for the Hamiltonian H = − d2

dx2 +x2 + 12
x2 + λ

x4 .
The underlined values are the optimal bounds according to inequality (3.10).

ε1 ε2 ε3

λ EL EU EL EU EL EU

0.001 9.000 114 234 9.000 114 334 9.000 114 231 9.000 114 327 9.000 114 231 9.000 114 327
0.01 9.001 138 022 9.001 147 691 9.001 137 408 9.001 146 987 9.001 137 409 9.001 146 989
0.1 9.010 945 111 9.011 912 031 9.010 883 476 9.011 841 809 9.010 885 097 9.011 843 425
1 9.065 963 521 9.162 607 906 9.059 599 522 9.155 786 288 9.061 245 282 9.157 377 241

‖µ(φ,E1(λ))‖ = N1λ
2(φ1, (V − ε1)

2φ1)
1/2 (3.6)

‖µ(φ,E2(λ))‖ = {‖η(φ,E1(λ))‖2 + λ4ε2
{
ε2 − 2N2

1 (ε2 + λε3)
}}1/2

(3.7)

and

‖µ(φ,E3(λ))‖ = {‖η(φ,E2(λ))‖2 + λ4
{
2λ3ε2ε3

(
1 − N2

1

) − λ2(1 + λ2)N2
1 ε2

3 + λ4ε2
3

}}1/2

(3.8)

where we have reproduced the formulae of Burrows et al [12] for computational convenience.
In this case, (3.3a) implies

f−(Ep(λ)) � E(λ) � f+(Ep(λ)) (3.9a)

where

f±(Ep(λ)) = Ep(λ) ± ‖µ(φ,Ep(λ))‖ for p = 1, 2, 3. (3.9b)

The only new integral (beyond the usual integrals of Rayleigh–Schrödinger perturbation
series) is seen to be (φ1|(V − ε1)

2φ1) which restricts the value of γ , for example in the case of
α = 4, to be greater than 4 even if we have used the first-order approximation ε1 (for which
γ > 2 is sufficient). This is, of course, due to the bound’s dependence on ε3 which required
γ > 4. The result in this case, however, is very useful [23, 34] when the radial Schrödinger
equation is characterized by large angular momenta l. For γ = 4.5 (i.e.A = 12 or l = 3
for A = l(l + 1)) and λ = 0.001, the first-order perturbation correction yields 9.000 114 285
with error bounds of ±4.8346 × 10−8. The second-order perturbation correction yields
9.000 114 279 with error bounds of ±4.7879 × 10−8; while ε3 yields 9.000 114 279 with an
upper bound of 9.000 114 327 and a lower bound of 9.000 114 231. Now, for any fixed φ,
the bounding functions f±(Ep(λ)) are easily shown to be monotonic increasing functions
of Ep(λ), p = 1, 2, 3, as we indicated above. Consequently the optimal bound for the set
{E1(λ) = E0 +λε1, E2(λ) = E0 +λε1 +λ2ε2, E3(λ) = E0 +λε1 +λ2ε2 +λ3ε3} is indeed given,
for λ <

|ε2|
ε3

, by

f−(E1(λ)) � E(λ) � f+(E2(λ)). (3.10)

The inequality λ < |ε2|
ε3

allows us to order the approximated eigenvalues as E1(λ) > E3(λ) >

E2(λ), for the sign of ε2 is always negative and the sign of ε3 is positive for moderate values
of λ. In table 2, we have verified these results by obtaining upper and lower bounds for
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the eigenvalues by means of (3.6)–(3.8); underlined values are the optimal bounds. Similar
bounds can be obtained for the case of α = 6 by using (2.13). Although, the upper bounds
obtained by this method are less accurate than the upper bounds obtained by means of (2.14),
the advantage of this method is the symmetric lower and upper bounds available through (3.9).

4. Conclusions and some remarks

The main results of this paper are concrete upper- and lower-bound formulae (2.14), (3.9)
and (3.10). There are many variational methods available to solve the eigenvalue problem for
the Hamiltonian (1.5), however they provide only upper bounds and usually no information
is available concerning the accuracy of the method other than comparison with numerical
solutions of the Schrödinger equation in question. Furthermore, for very small values of the
parameter λ, variational methods are usually slow and a large number of matrix elements are
needed to obtain sufficient accuracy. We have presented upper and lower bounds for such
situations which, as tables 1 and 2 indicate, provide excellent results for very small values of
λ. Although, the techniques used to produce the present results are standard, the ability of
these techniques to generate explicit bounds is a consequence of our pervious achievements,
yielding concrete forms for the first-order perturbation corrections of the wavefunctions.

Apart from the upper and lower bounds obtained, there are also some interesting results
concerning closed-form sums for double infinite series that follow directly from this work. It
is clear from (2.2) and (2.3) that

∞∑
m=1

∞∑
n=1

V0nVnmVm0

(E0 − En)(E0 − Em)
= (φ1, V φ1) (4.1)

where Vnm, n = 1, 2, . . . ,m = 1, 2, . . . , are given by (2.4). We will now look at the cases
α = 2, 4, 6, . . . . Similar results can be obtained for the cases of α = 1, 3, 5, . . . , by means
of the first-order corrections for the wavefunctions given previously [27, 28]; however, the
calculations will be more involved for such cases. For α = 2, we know that the matrix
elements (i.e. from (2.4)) read

Vnm =




(−1)n+m �(γ − 1)

�(γ )

√
m!(γ )n

n!(γ )m
if m � n

(−1)n+m
�(γ − 1)

�(γ )

√
n!(γ )m

m!(γ )n
if n � m.

(4.2)

On the other hand, the first-order correction of the wavefunction in this case reads [27, 28]

φ1(x) = 1√
2

xγ− 1
2 e− x2

2

(γ − 1)
√

�(γ )

[
log(x) − 1

2
ψ(γ )

]
for γ > 1. (4.3)

Consequently, the following results follow immediately.

Lemma 3. For γ > 1 and Vnm as given by (4.2), we have
∞∑

m=1

∞∑
n=1

V0nVnmVm0

16nm
= 1

8(γ − 1)5
+

ψ(1)(γ )

16(γ − 1)3
(4.4)

where ψ(1)(γ ) is the first derivative of the digamma functions.

The proof of this lemma is obtained by calculating the inner product of the right-
hand side of (4.1) by means of (4.3) for 0 � x < ∞, where V (x) = x−2 and
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En = 4n + 2γ (n = 0, 1, 2, . . .). For the case α = 4 and γ > 2, the matrix elements
(2.4) read

Vnm =




(−1)n+m
�(γ − 2)

�(γ + 1)

√
m!(γ )n

n!(γ )m
[γ (m − n + 1) + 2n] if m � n

(−1)n+m
�(γ − 2)

�(γ + 1)

√
n!(γ )m

m!(γ )n
[γ (n − m + 1) + 2m] if n � m.

(4.5)

On the other hand, the first-order corrections of the wavefunction for this case are given by
(2.7). Therefore (4.1) leads to the following results.

Lemma 4. For γ > 4 and Vnm as given by (4.5), we have
∞∑

m=1

∞∑
n=1

V0nVnmVm0

16nm
= −820 + 1954γ − 1753γ 2 + 694γ 3 − 90γ 4 − 12γ 5 + 3γ 6

16(γ − 4)(γ − 3)2(γ − 2)5(γ − 1)5

+
ψ(1)(γ )

16(γ − 2)3(γ − 1)3
(4.6)

where ψ(1)(γ ) is the first derivative of the digamma functions.

As the final case that we illustrate, namely α = 6 and γ > 3, we point to the fact that
equation (2.4) lets us deduce

Vnm =




(−1)n+m
�(γ − 3)

2�(γ + 2)

√
m!(γ )n

n!(γ )m
[(2 + m)(1 + m)γ (γ + 1)

− 2n(1 + m)(γ − 3)(γ + 1) − n(1 − n)(γ − 2)(γ − 3)] if m � n

(−1)n+m
�(γ − 3)

2�(γ + 2)

√
n!(γ )m

m!(γ )n
[(2 + n)(1 + n)γ (γ + 1)

− 2m(1 + n)(γ − 3)(γ + 1) − m(1 − m)(γ − 2)(γ − 3)] if n � m.

(4.7)

where the first-order correction for the wavefunction is now given by (2.10). Therefore, by
means of (4.1), we conclude with the following lemma.

Lemma 5. For γ > 7 and Vnm as given by (4.7), we have
∞∑

m=1

∞∑
n=1

V0nVnmVm0

16nm
= I1

I2
+

ψ(1)

16(γ − 3)3(γ − 2)3(γ − 1)3
(4.8)

where

I1 = 522 652 − 1717 440γ + 2371 931γ 2 − 1785 046γ 3 + 792 061γ 4 − 206 964γ 5

+ 28 725γ 6 − 1158γ 7 − 169γ 8 + 16γ 9

and

I2 = 32(γ − 7)(γ − 5)2(γ − 4)(γ − 3)5(γ − 2)5(γ − 1)5

where ψ(1)(γ ) is the first derivative of the digamma function.
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